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a b s t r a c t

A model based on an equation for the scalar correlation function is used for calculating the interaction
between chemical reactions and micromixing in a turbulent flow of constant density. The Prandtl hypoth-
esis for the terms responsible for turbulence affect the scalar field structure and the simplest approximation
for the terms depending on chemical reactions are used to close the equation for the correlation function.
The closure proposed is shown to be statistically reliable. To determine the effect of chemical reactions
on the averaged field and the correlation function, the probability density function (PDF) is found in the pre-
sumed form which has allowed one to obtain the data on the averaged field and the correlation function. The
admixture is assumed to be passive, i.e., it does not affect the parameters of turbulence and turbulent dif-
fusivity, and the required parameters of the homogeneous turbulent field – to be known. The characteristic
features of the transport phenomena in a 2D layer with a given value of a scalar at its boundaries are con-
sidered. Results on the effect of the chemical reaction on the distributions of an averaged scalar, a scalar fluc-
tuation intensity, and a scalar dissipation rate are obtained. The process of developing a reaction zone is
calculated.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of determining the effect of turbulence on the sta-
tistical characteristics of a scalar field is the principal problem in
analyzing turbulent reacting flows. Statistics of a fluctuating scalar
field (temperature, concentration) should be known in many areas
of modern physics. For example, the propagation of laser beams
and radiowaves in the atmosphere is strongly affected by the dis-
tribution of a small scale temperature gradient. The parameters
of the scalar field affected by turbulence determine the most
important processes in engineering applications, including internal
combustion engines, chemical reactors, power plants, mixing and
destruction of contaminants in the atmosphere. The fluctuations
of electric current in the probes used for diagnostics of turbulent
flows of conducting fluids are also determined by the statistics of
the distributions of conducting components.

The mixing mechanism in a turbulent flow is the following. The
turbulent motion makes the isoscalar surfaces to be warped and
stretched, thus causing the gradients and Laplacians of the scalar
field to increase and the exchange processes to intensify. The
molecular transport smoothes the scalar field, and a dynamic equi-
librium occurs between the smoothing, and the warping and
stretching.
ll rights reserved.
Because of the stochastic nature of turbulent motions, the prob-
lem of determining the micromixing intensity reduces to deter-
mining the statistical characteristics of the scalar field Laplacians
whose values allow finding the PDF required for calculation of
averaged rates of chemical reactions.

It is reasonable to divide all the methods for micromixing into
local or one-point and nonlocal ones among which the two-point
methods are the simplest.

To correctly present the mixing of reacting flows, the descrip-
tion should include actual values of transport coefficients, that is
possible only in two-point models.

The two-point approach is able to properly take into account
actual values of diffusivities and thermal conductivity and to com-
pute characteristic scales of the scalar field. In addition, the above
approach permits one to divide the effect of turbulence into advec-
tion and micromixing. As a result, we can consider the unsteady
processes such as the combustion zone formation and describe
the dependence of the rate of premixed turbulent combustion on
physical and chemical characteristics of a combustible mixture.

The two-point model can be constructed by several methods:
on the basis of an equation for the two-point PDF of a scalar
(PDF2); an equation for the joint PDF of a scalar and its gradient
or an equation for a scalar correlation function (SCF). In any case,
the derived equations need closing.

Our interest to the equation for the SCF arose in analyzing a
capability of the PDF2 to describe turbulent combustion [1].
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Nomenclature

BrrðxÞ correlation function of the longitudinal component of
turbulent velocity fluctuation

ðcðx1j2; tÞÞ instantaneous scalar
Cðx1j2Þ averaged scalar
c0ðx1j2; tÞ ¼ cðx1j2; tÞ � Cðx1j2Þ instantaneous scalar fluctuation
Dðx1j2; tÞ turbulent diffusivity
Da Damköhler number (14)
divrjgðuÞ divergence of the argument vector over the variable de-

noted by an index
dispðzÞ variance of the scalar PDF Pðz; cÞ
Dm molecular diffusivity
Drðx1j2; tÞ eddy-diffusivity
Fðz; cÞ ¼

R1
c Pðz; c0Þdc0 scalar probability distribution at point z

Pðz; cÞ scalar PDF at point z
r ¼ x1 � x2 vector that joints points x1 and x2
r; h;/ spherical variables
Rðx1; x2; tÞ scalar correlation function
t time
U1j2 averaged velocity
WðcÞ chemical reaction rate
hWðcÞi averaged chemical reaction rate
W 0 chemical reaction rate fluctuation
x1j2 spatial coordinates of the considered pair of points
zjg ¼ ðx1 þ x2Þ=2 coordinate pointed to the middle between the

points x1 and x2

k turbulent velocity field microscale
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Similar studies have been reported by O’Brien [2,3]. A common
point is the understanding that the micromixing model for turbu-
lent reacting flows should be improved, which is impossible within
the framework of one-point approaches.

The method of closing the equations for the PDF2 and SCF in
[2,3] was based on analyzing the motion of a pair of particles in
the turbulent velocity field. The particles were involved in Brown-
ian motion, which in author s opinion models the molecular mix-
ing. For the homogeneous conditions this theory allowed the
calculation of eddy-diffusivity from the energy spectrum of the
turbulent velocity field. The authors of [3] used linear dependen-
cies for the chemical reaction rates, which enabled them to pay
no attention to the closure of the corresponding term in the equa-
tion for the SCF.

Previously in [4,5], we also used the theory of motion of two
particles for micromixing analysis. In such a case, however, the
calculated eddy-diffusivity was time-dependent (as in [2,3]), which
is rather an undesirable feature. When we tried to find another
method of closure of the PDF2 equation, we found surprising
correlations between the equations for the PDF2 and SCF. Closing
the equation for the PDF2 results in the appearance of the SCF
derivatives. This means that the problem on closing the PDF2 can
be reduced to the closure of the equation for the SCF [1]. Such a
circumference holds true also in the other methods, e.g., in the ap-
proach based on the equations for the joint PDF of a scalar and its
gradient [6].

Our attempts to avoid the time dependence of eddy-diffusivity
were began, assuming that the eddy-diffusivity can be considered
at zero time. The calculation with the equation for the SCF agreed
well with DNS [8]. Later on the derived form of the equation was
explained from physical considerations [1]. The resulting form of
closing is similar to proposed by Hasselmann for correlation func-
tion of a field of velocity [7]. Preliminary SCF computations are pre-
sented in [1]. The SCF computations results were used for solving
the PDF equation and for determining the averaged chemical reac-
tion rate.

As in [1], here we consider a constant density turbulent flow in
a 2D layer with fixed values of a scalar at the boundaries. Chemical
processes are assumed to affect the SCF both directly and indirectly
by varying the averaged scalar field. The direct effect of chemical
reactions on the SCF is modeled by closing the equation for the
SCF. The developed closure is exact for both the linear reaction rate
and for points r ¼ 0 and r ¼ 1. To simplify the calculations, turbu-
lence is assumed homogeneous and isotropic, and the scalar dissi-
pation is also isotropic. In the anisotropic case the Prandtl
hypothesis for the closure of the SCF equation allows us to obtain
the tensor of eddy-diffusivity and thus to estimate a possible effect
of scalar dissipation anisotropy. To enhance the reliability of
calculations, in parallel with solving the PDF equation, we found
the PDF of a scalar using the presumed distribution form, which
is suitable for the intermittence absence. Below we will obtain
the distributions of averaged scalar and variance of scalar fluctua-
tions over the layer and those of the averaged chemical reaction
rate and scalar dissipation. In addition, the regime of the reaction
zone development will be calculated.

2. Basic assumptions

The scalar correlation function

Rðx1; x2; tÞ ¼ hc0ðx1; tÞc0ðx2; tÞi ð1Þ

is a two-point characteristic. The equation for the SCF can be de-
rived in a usual way by multiplying the transport equation for scalar
fluctuations at one-point by the value of the scalar fluctuation at the
second point and, vice versa, and then by adding the equations.

Having passed to new independent variables g ¼ ðx1 þ x2Þ=2
and r ¼ x1 � x2 and having averaged we have

@

@t
Rðg; r; tÞ þ ððU1 þ U2Þ=2 � rgÞRðg; r; tÞ

þ ððU1 � U2Þ � rrÞRðg; r; tÞ þ divghðu01 þ u02Þc0ðx1; tÞc0ðx2; tÞi=2
þ 2div rhðu01 � u02Þc0ðx1; tÞc0ðx2; tÞi

¼ Dm
1
2
@2

@g2 Rðg; r; tÞ þ 2
@2

@r2 Rðg; r; tÞ
 !

þ ðDðx1Þ

þ Dðx2ÞÞ
dCðxÞ

dx
jx1

dCðxÞ
dx
jx2
þ c0ðx2; tÞW 0jx1

D E
þ c0ðx1; tÞW 0jx2

D E
ð2Þ

For this equation to be closed, we must find the terms with
third moments and the chemical reaction rate.

Using the generalized Prandtl hypothesis, which relates the
averaged flux of the scalar F to its gradient,

h u0iF x1; . . .ð Þ
� �

i ¼ hu0ili
@

@xi
Fðx1; . . .Þ ð3Þ

(the dots denote the dependence at several space points, and sub-
script indicates to component), for the terms with third moments
in Eq. (2)] it is obtained

divghðu01 þ u02Þc0ðx1; tÞc0ðx2; tÞi
�

2 ¼ @

@gi
DðxÞ @

@gi
Rðg; r; tÞ ð4Þ

and

2div rhðu01 � u02Þc0ðx1; tÞc0ðx2; tÞi ¼
@

@ri
Drðx1Þ þ Drðx2Þð Þ @

@ri
Rðg; r; tÞ

ð5Þ
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The closure of the SCF equation implies considerations of diffu-
sion of a particle pair. The correlation function represents a ‘‘cloud”
in fluid, and this cloud is deformed under the turbulence action like
a real volume of fluid. Primary attention is paid to several charac-
teristic points of the cloud, such as the cloud center. As a result,
turbulent diffusivity appears in the description of the turbulent
motion of this center in Eq. (4). The correlated endpoints of frag-
ment x1 and x2 undergo diffusion. So, Eq. (5) contains the diffusion
term with an unknown diffusivity that should be determined. This
diffusivity can be expressed as a ratio of the turbulence intensity to
the characteristic time. Instead of the intensity we can use the cor-
relation function of the collinear to r component of the velocity
thus taking into account the stretching as the main effect of turbu-
lence on the scalar field. The characteristic time can be found when
considering an infinitely large distance between the two points. In
such a case, the points are uncorrelated, and the diffusion intensity
at each of them is the turbulent diffusivity. This allows us to write

Drðx1j2Þ ¼ Dðx1j2Þð1� BrrðrÞ=Brrð0ÞÞ ð6Þ

The terms for the effect of chemical reactions on the correlation
function can be approximated by the following manner. When
r ¼ 0 both of these terms are the same, and they can be calculated
from a known PDF. When r !1, the terms are equal to zero.
Taking into account the symmetry of the correlation function with
respect to r we use the simplest interpolation

c0ðx2; tÞW 0jx1

D E
þ c0ðx1; tÞW 0jx2

D E
¼ c0W 0� �

jx1
þ c0W 0� �

jx2

� �
Rðg; r; tÞ

ð7Þ

Here Rðx; r; tÞ is the normalized correlation function of a scalar.
It is equal to unity at r ¼ 0.

Rðx; r; tÞ ¼ Rðx; r; tÞ=Rðx;0; tÞ ð8Þ

The obtained form is exact when the reaction rate linearly depends
on the concentration [3].

It was shown that the approach (4) together with (5) is statisti-
cally reliable and satisfies the requirements of the known Khinchin
theorem [1].

Thus we have

@

@t
Rðg; r; tÞ þ 1

2
ðU1 þ U2Þ � rg
� �

Rðg; r; tÞ

þ ðU1 � U2Þ � rrð ÞRðg; r; tÞ ¼ @

@gi
ðDðgÞ þ DmÞ

@

@gi
Rðg; r; tÞ

þ @

@ri
ðDrðx1Þ þ Drðx2Þ þ 2DmÞ

@

@ri
Rðg; r; tÞ þ ðDðx1Þ

þ Dðx2ÞÞ
dCðxÞ

dx
jx1

dCðxÞ
dx
jx2
þ c0W 0� �

jx1
þ c0W 0� �

jx2

� �
Rðg; r; tÞ ð9Þ
r/2
x

o

o
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η
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2.1. Equation for the averaged scalar field

With the assumptions adopted the equation for the averaged
value takes the form

@

@t
Cðz; tÞ þ ðU �rzÞCðz; tÞ ¼ gradz ðDðz; tÞþDmÞdivzCðz; tÞð Þ þ hWðcÞi

ð10Þ
0

x2

Fig. 1. Computational domain and independent variables.
2.2. Determination of the probability density function of a scalar

To calculate the averaged chemical reaction rate it is necessary
to know the scalar PDF. In our previous studies the PDF equation
closed by the simplest micromixing model was integrated. In the
present work the PDF is determined using the presumed form of
the distribution. This improvement is aided by the fact that we
consider so called strong mixing regimes, virtually without inter-
mittence. It allows assuming the PDF to be close to the normal dis-
tribution taking into account that the independent variable ranges
from 0 to 1. In such a case the normalized distribution function
takes the form

Fðz; cÞ ¼
�erf c�CðzÞffiffiffiffiffiffiffiffiffiffi

dispðzÞ
p

 �

þ erf 1�CðzÞffiffiffiffiffiffiffiffiffiffi
dispðzÞ
p

 �
 �

erf CðzÞffiffiffiffiffiffiffiffiffiffi
dispðzÞ
p

 �

þ erf 1�CðzÞffiffiffiffiffiffiffiffiffiffi
dispðzÞ
p

 �
 � ð11Þ

All required averaged values are determined by integrating the
function Fðz; cÞ.

3. Formulation of the problem

One of the essential difficulties associated with the equation
for the SCF is a large number of independent variables. In the
general case the SCF depends on six spatial variables and time.
Under the stationary homogeneous conditions and isotropy the
number of variables reduces down to two. In the case of ingo-
mogneity the minimum number of variables can be obtained
considering the 2D flow of constant width at the walls of which
the values of a scalar are given, and inhomogeneity takes place
only over one variable.

This case corresponds to the Couette flow between two infinite
flat plates one of which moves with a constant velocity. The tem-
peratures (scalars) of the plates are constant but different. If the
molecular conductivity differs from zero, then a heat flux occurs.
In the space between the walls turbulence exists, which results
in initiating the turbulent transport. In order to divide the molec-
ular and turbulent transports, the turbulent transport of a scalar
from the walls is assumed to be equal to zero. It is natural as the
normal fluid velocity at the wall equals zero.

Fig. 1 shows a schematic of independent variables. The vertical
line represents the spatial coordinate corresponding to the varia-
tion of the location of the two-point center. The lines that end at
the boundaries clarify the boundary conditions for the SCF. At
the boundary the scalar fluctuation is equal to zero.

For the steady-state regime the SCF should contain three inde-
pendent variables: the center position across the layer z, the seg-
ment length r, and the direction angle h. The variables r and h
represent a polar coordinate system when there is no dependence
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on third variable /. To reduce the number of independent variables
the SCF is assumed to be independent of the direction angle h. This
is a very strong assumption but permissible for illustration of the
method proposed (see the estimates made in [1]).

Thus we have

1
2
@

@z
DðzÞ þ Dmð Þ @

@z
Rþ 1

r2

@

@r
r2Drm

@

@r
Rþ ðDðx1Þ þ Dðx2ÞÞ

dCðzÞ
dz
kx1

dCðzÞ
dz
kx2
þ hc0WðcÞiR ¼ 0 ð12Þ

Here, Drm is the coefficient that includes the eddy-diffusivity
and molecular transport

Drm ¼ 2Dm þ Dðzþ r=2Þ þ Dðz� r=2Þð Þ � 1� BLLðrÞ
BLLð0Þ


 �
ð13Þ

and velocity correlation function was approximated as [1]: BLLðrÞ=
BLLð0Þ ¼ expð�r2=ð4k2ÞÞ.

The chemical reaction rate is expressed:

WðcÞ ¼ Da � ðc � cminÞ � ðcmax � cÞ when cmin < c

< cmax and it is zero in other cases: ð14Þ

The problem depends on the following dimensional parame-
ters: the turbulent diffusivity at the layer center D0, the boundary
layer thickness d, the internal scale of the turbulent velocity field k,
and the molecular diffusivity Dm.

The value of the turbulent diffusivity is given as [1],

DðzÞ ¼ D0D1ðzÞD1ð1� zÞ ð15Þ

where D1ðzÞ ¼ z3=d3

D1mð1þz3=d3Þ and D1m is the value of D1ðzÞ at the center
of the layer.

According to (15) the turbulent diffusivity is zero at the bound-
aries. Only in this case we can separate the effects of turbulent and
molecular transports on the distribution of the averaged scalar. The
third power in the expression for D1 is chosen according to the con-
ditions applied to the normal velocity component and the scale at
the wall.

In our homogeneous case the balance equation for the averaged
scalar CðzÞ (10) takes the form

@

@z
ðDðzÞ þ DmÞ

@

@z
CðzÞ þ hWðcÞi ¼ 0 ð16Þ
3.1. Dimensionless variables

To bring the problem to a dimensionless view we used the
layer width and the turbulent diffusivity D0. This yields the value
of Dm to be a combination of the Reynolds and Prandtl or
Schmidt numbers Dm ¼ k=ðPrReÞ; where the Reynolds number is
calculated by the fluctuation velocity u0 and the layer width,
whereas the value of k depends on the ratio of the integral scale
of turbulence l to the width of the layer and the coefficient kT in
the relation D ¼ kT u0l. For Dm ¼ 0:0005 and Pr ¼ 0:7, characteris-
tic for further calculations, the Reynolds number is equal to
about 70,000.

3.2. Boundary conditions and calculation scheme

The fact that we have to calculate simultaneously the system of
equations with a different set of independent variables results in
dividing the boundary conditions into groups. The first group of
the boundary conditions is used for the averaged field and the dis-
tribution function

z ¼ 0 : Cð0Þ ¼ 0; Fð0; cÞ � 0
z ¼ 1 : Cð1Þ ¼ 1; Fð1; cÞ � 1

ð17Þ
Additionally for the distribution function

c ¼ 0 : Fðz;0Þ � 1
c ¼ 1 : Fðz;1Þ � 0

ð18Þ

and finally for the SCF

zþ r=2 ¼ 1 : Rðz; r=2Þ ¼ 0
z� r=2 ¼ 0 : Rðz; r=2Þ ¼ 0

ð19Þ

The relation between the equations is the following. The aver-
aged field determines the boundary condition for the SCF when
one of the points lies at the boundary of the computational do-
main. The correlation function determines the distribution of the
variance and the micromixing rate (scalar dissipation). The vari-
ance is used for finding the PDF that is applied for averaging the
terms depending on the reaction rate in Eqs. (16) and (12).

The averaged field was calculated using the DBVPFD subroutine
from IMSL. It uses the Newtonian procedure involving automatic
generation of a grid. Depending on the parameters Da and Dm, the
number of nodes varied from 50 to 2000. The parameter determin-
ing the convergence of the equation for the averaged value was set
to 10�9. The SCF was calculated by means of the DLSLXG (IMSL) sub-
routine. The procedure enables solving a linear set of equations on
the basis of the LU factorization and the Markovitz symmetric strat-
egy for rarified matrices. The calculations were performed with a
variable grid density (from 8 � 8 to 256 � 256). The SCF was calcu-
lated in a rectangular domain 0 < z < 1;0 < jrj < z for z < 0:5 and
0 < jrj < 1� z for 0:5 < z < 1 under the zero boundary conditions.
4. Calculation results

4.1. Variation of scalar dissipation caused by variation of mean scalar
field

The effect of chemical reactions on micromixing is character-
ized by the distribution of scalar dissipation. The scalar dissipation
changes, first, due to varying averaged scalar field and related
source term in the SCF equation and, second, due to a direct effect
of chemical reactions on the equation for the SCF. An analysis of
the latter effect is the main goal of the present study. In the present
section we discuss the effect of variation of the averaged field on
the scalar dissipation distribution. For this purpose the term
including < c0WðcÞ > in the SCF equation is omitted.

The effect of the Damköhler number on the distribution of the
averaged scalar (Fig. 2) is strongly pronounced in the vicinity of
the boundaries where the averaged scalar gradients vary violently.
Near the surface z ¼ 0 the gradient grows, which can be explained
by an increase of the averaged scalar in the layer. The scalar flux
from the boundary also grows. Near the boundary z ¼ 1 the scalar
gradient decreases in comparison with a nonreacting case due to
the disappearance of one chemical reaction component. The itera-
tion process diverges when the Damköhler number exceeds 2.5.
The calculations performed by the relaxation method reveal that
such a behavior is attributed to the instability of the method for
seeking a stationary solution.

The calculation of the averaged scalar field by the relaxation
method was performed using the DMOLCH procedure (IMSL). The
initial condition was the linear distribution over the layer width,
which corresponds to the absence of turbulence and chemical reac-
tions. The equation for the SCF was solved in the quasi-static for-
mulation. This is consistent to the assumption that the variance
of the scalar field reaches the stationary condition much faster
than the averaged field itself.

Fig. 3 shows the process of reaching the stationary regime for
Da ¼ 5. This process can be divided into three stages: initial stage
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up to the characteristic time T ¼ 0:8, the main stage up T ¼ 10, and
the final stage. At the initial stage when the turbulent field with a
appreciable level of variance develops, there is no reaction effect.
At the main stage, the reaction zone is formed. The final stage is
characterized by a stationary reaction regime corresponding to
all previous examples for which the iteration method was used.
As can be seen from Fig. 3, the maximum averaged reaction rate
is first observed in the vicinity of the boundary z ¼ 1, and then
the maximum shifts to the opposite boundary in spite of the used
dependence for the reaction rate, implying that the maximum
reaction rate reaches the scalar value equal to 0.75.

The solution of the SCF equation is affected by the variance
distribution hc2i. Fig. 4 shows the appropriate distributions. Com-
T
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0
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1
.001.002.003.004.005.006.007.008.009.010.011.012.013.014.015

Fig. 3. Development of the reaction zone for Da ¼ 5. Time variation of the averaged
reaction rate distribution.
paring them with those in Fig. 2 one can conclude that the higher
values of the variance are observed in the regions of stronger gra-
dients of the averaged field. The variance decrease due to that of
gradients is much distinguished for large z and the Damköhler
numbers. It is natural, since only the distribution of averaged val-
ues affects the solution of the SCF equation by varying the source
term. These distributions are the starting ones for finding the PDF.

The main goal of our study on the modeling of turbulent reacting
flows is to calculate the scalar dissipation. Fig. 5 shows the distribu-
tions of the scalar dissipation for various Damköhler numbers. The
case under consideration is characterized by the dissipation concen-
tration in the near-wall regions where the gradients of averaged val-
ues prevail.
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Fig. 5. Distribution of scalar dissipation for various Damköhler numbers.
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4.2. Variation of scalar dissipation with regard to the direct effect of
chemical reactions on the scalar correlation function

To clarify a direct effect of the chemical reaction on the scalar
field structure we performed the calculations with the use of Eq.
(9). Fig. 4 shows the fluctuation intensity distributions obtained
with and without regard to the terms that directly depend on
chemical reactions. It is surprising that the difference in the results
is small. It can be explained by the fact that the regimes under
consideration are characterized by thin zones of strong averaged
gradients. In such zones the source terms in the equation for the
SCF are very large, and their effect on the solution masks the direct
effect of chemical reactions.

5. Conclusions

The micromixing model based on the equation for the scalar
correlation function was used to describe the scalar field decay
and the characteristic features of the mixing process in the 2D
layer. To apply the proposed method for turbulent reacting flows
the equation for the SCF is supplemented with a procedure of find-
ing the PDF. This allows us to calculate the terms depending on the
averaged chemical reaction rate. We are also able to describe the
effect of the intensity of chemical reactions (the Damköhler num-
ber) on the distribution of the averaged scalar, variance, and scalar
dissipation. Particular attention was paid to taking into account the
direct effect of the chemical reactions in the equation for the SCF.
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